几何画板在中学数学教学中的应用
随着新课改的实施和“减负增效”工作的深入开展,课堂教学的单一化、程式化势必成为学生智力开发、学生创新精神和实践能力培养的绊脚石。教学手段及教学方法的改革势在必行,积极有效地采用先进的手段和技术, 必然会推动课堂教学结构、教学思想以及教学理论体系的改革与发展。数学这门课程,作为自然科学的基础学科,学生学得好与坏,将直接影响学生素质的提高,因此作为数学教师必须在思想观念、教学方式、教学手段等方面都要发生深刻的变革,多媒体计算机在数学教学中的应用,其教学手段的直观性,内容的丰富性,特别是在许多无法用实物教学的课程中起着无可替代的作用。它能极大的激发学生的学习兴趣,活跃课堂气氛;便于多方位地提高学习效果;在数学教学中能克服许多常规教学中无法解决的困难;便于增加课堂的容量,提高课堂效率。
将几何画板应用于中学数学教学中,可以使原本乏味枯燥的数学课变得生动、活泼,且充满优美感,使学生学习情绪高涨,激发出学生学习兴趣,下面就通过一些举例让大家感受在中学数学教学中的作用。
一、几何画板做的动态效果,让学生在"做中学",体验当数学家的感受
在讲授三角形中位线的性质这一节课时,传统的教学方法是把"三角形的中位线平行于第三边并且等于第三边的一半"这一性质告诉学生,然后再加以证明。 有了几何画板,可以通过用几何画板画一个△ABC,并画出它的一条中位线DE,度量三角形各边的长度及DE的长度,显示它们大小的数值就展现在屏幕 上(如下图)。教师设计以下问题,让学生自己探索、实验。
请你拖动三角形的任意一个顶点,通过观察回答下列问题:
1.中位线DE与三角形各边有什么样的位置关系?
2.中位线DE与三角形各边的长度有什么相等关系?
3.猜想三角形的中位线有什么性质?请你用一句话来概括。
4.你能证明这一猜想吗?
二、利用几何画板的功能,为"数形结合"创造了一条便捷的通道
如在"二次函数y=ax^2+bx+c的图像"一节中,如何向学生说明y=ax^2、y=ax^2+k、y=a(x-h)^2、y=a(x-h)^2+k等函数图像的相互关系一直是传统教学中的重点和难点,学生难以理解,教师也难以用文字语言说明。通过《几何画板》只需用鼠标上下移动点a、h、k,y=ax^2、y=ax^2+k、y=a(x-h)^2、y=a(x-h)^2+k等函数图像便可一目了然,难题也就迎刃而解,学生也在a、h、k的变化过程中加深对二次函数的理解。
三、用几何画板,让学生拥有创新的机会
在近年来的中考题中,运动变化型试题频频出现,这类试题特别关心"不变量",重在考察学生的创新意识。《几何画板》让学生拥有了"研究数学"的途径。
例如图,在半径为6,圆心角为90°的扇形OAB的弧AB上,有一个动点P,PH⊥OA,垂足为H,△OPH的重心为G。
1.当点P在弧AB上运动时,线段GO、GP、GH中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度。
2.设PH=x,GP=y,求y关于x的函数解析式,并写出函数的定义域。
3.如果△PGH是等腰三角形,试求出线段PH的长。
利用《几何画板》按照已知条件画出图形(如下图),只需拖动点P,图中线段即在动态地变化着,很容易发现线段GO、GP、GH中,只有GH保持不 变。要求出线段GH的长度,就需在变化过程中找出所有不变量,由"动"观"静",寻求此题的突破口。此类题型最让学生们伤脑筋,在中考中失分率颇高
借助 《几何画板》的动态功能,使学生达到由"静"观"动"的水平,培养学生的数学创造性思维,挖掘学生的创造潜力,提高学生的创新意识。
通过以上介绍,可以看出几何画板在中学数学中有着举足轻重的作用,用它可以帮助学生学习数学,了解数学意义
(作者 : 曹佳 刁许燕 薛扬丽 张勋 丁依帆 李静)
版权声明:凡注明“来源:中原教育周刊的所有作品,版权归中原教育周刊所有。任何媒体转载、摘编、引用,须注明来源中原教育周刊和署著作者名,否则将追究相关法律责任。